Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing

Identifieur interne : 000258 ( Chine/Analysis ); précédent : 000257; suivant : 000259

Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing

Auteurs : RBID : Pascal:14-0024901

Descripteurs français

English descriptors

Abstract

Deposition technology of transparent conducting oxide (TCO) thin films is critical for high performance of optoelectronic devices. Solution-based fabrication methods can result in substantial cost reduction and enable broad applicability of the TCO thin films. Here we report a simple and highly effective solution process to fabricate indium-tin oxide (ITO) thin films with high uniformity, reproducibility, and scalability. The ITO films are highly transparent (90.2%) and conductive (p = 7.2 × 10-4 Ω•cm) with the highest figure of merit (1.19 × 10-2 Ω-1) among all the solution-processed ITO films reported to date. The high transparency and figure of merit, low sheet resistance (30 Ω/sq), and roughness (1.14 nm) are comparable with the benchmark properties of dc sputtering and can meet the requirements for most practical applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0024901

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing</title>
<author>
<name>ZHANGXIAN CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117543</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WANCHAO LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117543</wicri:noRegion>
</affiliation>
</author>
<author>
<name>RAN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117543</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUNFENG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117543</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Sustainable Energy Laboratory, China University of Geosciences Wuhan, 388 Lumo Road</s1>
<s2>Wuhan 430074</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430074</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GUOQIN XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117543</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HANSONG CHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 117543</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Sustainable Energy Laboratory, China University of Geosciences Wuhan, 388 Lumo Road</s1>
<s2>Wuhan 430074</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430074</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0024901</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0024901 INIST</idno>
<idno type="RBID">Pascal:14-0024901</idno>
<idno type="wicri:Area/Main/Corpus">000283</idno>
<idno type="wicri:Area/Main/Repository">000D12</idno>
<idno type="wicri:Area/Chine/Extraction">000258</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Comparative study</term>
<term>Conducting material</term>
<term>Cost lowering</term>
<term>Deposition</term>
<term>Film</term>
<term>Growth from solution</term>
<term>High performance</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Manufacturing process</term>
<term>Optoelectronic device</term>
<term>Reproducibility</term>
<term>Roughness</term>
<term>Scalability</term>
<term>Sheet resistivity</term>
<term>Sputtering</term>
<term>Technology</term>
<term>Thin film</term>
<term>Tin oxide</term>
<term>Transparency</term>
<term>Transparent material</term>
<term>Uniformity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Couche mince</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>Méthode en solution</term>
<term>Procédé fabrication</term>
<term>Dépôt</term>
<term>Technologie</term>
<term>Haute performance</term>
<term>Dispositif optoélectronique</term>
<term>Diminution coût</term>
<term>Couche ITO</term>
<term>Uniformité</term>
<term>Reproductibilité</term>
<term>Extensibilité</term>
<term>Film</term>
<term>Transparence</term>
<term>Résistivité couche</term>
<term>Rugosité</term>
<term>Etude comparative</term>
<term>Pulvérisation irradiation</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Technologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deposition technology of transparent conducting oxide (TCO) thin films is critical for high performance of optoelectronic devices. Solution-based fabrication methods can result in substantial cost reduction and enable broad applicability of the TCO thin films. Here we report a simple and highly effective solution process to fabricate indium-tin oxide (ITO) thin films with high uniformity, reproducibility, and scalability. The ITO films are highly transparent (90.2%) and conductive (p = 7.2 × 10
<sup>-4</sup>
Ω•cm) with the highest figure of merit (1.19 × 10
<sup>-2</sup>
Ω
<sup>-1</sup>
) among all the solution-processed ITO films reported to date. The high transparency and figure of merit, low sheet resistance (30 Ω/sq), and roughness (1.14 nm) are comparable with the benchmark properties of dc sputtering and can meet the requirements for most practical applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>29</s2>
</fA05>
<fA06>
<s2>45</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHANGXIAN CHEN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANCHAO LI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAN LI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YUNFENG ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GUOQIN XU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HANSONG CHENG</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, National University of Singapore, 3 Science Drive 3</s1>
<s2>Singapore 117543</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Sustainable Energy Laboratory, China University of Geosciences Wuhan, 388 Lumo Road</s1>
<s2>Wuhan 430074</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>13836-13842</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000504273280200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0024901</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Deposition technology of transparent conducting oxide (TCO) thin films is critical for high performance of optoelectronic devices. Solution-based fabrication methods can result in substantial cost reduction and enable broad applicability of the TCO thin films. Here we report a simple and highly effective solution process to fabricate indium-tin oxide (ITO) thin films with high uniformity, reproducibility, and scalability. The ITO films are highly transparent (90.2%) and conductive (p = 7.2 × 10
<sup>-4</sup>
Ω•cm) with the highest figure of merit (1.19 × 10
<sup>-2</sup>
Ω
<sup>-1</sup>
) among all the solution-processed ITO films reported to date. The high transparency and figure of merit, low sheet resistance (30 Ω/sq), and roughness (1.14 nm) are comparable with the benchmark properties of dc sputtering and can meet the requirements for most practical applications.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode en solution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Growth from solution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método en solución</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Procédé fabrication</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Manufacturing process</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Procedimiento fabricación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dépôt</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Deposition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Depósito</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Technologie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Technology</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tecnología</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Haute performance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>High performance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Alto rendimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Diminution coût</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Cost lowering</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Reducción costes</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Uniformité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Uniformity</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Uniformidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Reproductibilité</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Reproducibility</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Reproductividad</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Extensibilité</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Scalability</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estensibilidad</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Film</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Film</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Película</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Transparence</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Transparency</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Transparencia</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Résistivité couche</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Sheet resistivity</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Resistividad capa</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Rugosité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Roughness</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Rugosidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Sputtering</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Pulverización irradiación</s0>
<s5>23</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0024901
   |texte=   Fabrication of Highly Transparent and Conductive Indium-Tin Oxide Thin Films with a High Figure of Merit via Solution Processing
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024